34 research outputs found

    Novel cruzain inhibitors for the treatment of Chagas' disease.

    Get PDF
    The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas' disease

    Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads

    Get PDF
    The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts

    Novel Cruzain Inhibitors for the Treatment of Chagas’ Disease

    No full text
    The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas’ disease

    A high-throughput turbidometric assay for screening inhibitors of Leishmania major protein disulfide isomerase.

    No full text
    International audienceThe use of a high-throughput technique to perform a pilot screen for Leishmania major protein disulfide isomerase (LmPDI) inhibitors identification is reported. In eukaryotic cells, protein disulfide isomerase (PDI) plays a crucial role in protein folding by catalyzing the rearrangement of disulfide bonds in substrate proteins following their synthesis. LmPDI displays similar domain structure organization and functional properties to other PDI family members and is involved in Leishmania virulence. The authors used a method based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol. The screen of a small library of 1920 compounds was performed in a 384-well format and led to the identification of 27 compounds with inhibitory activity against LmPDI. The authors further tested the cytotoxicity of these compounds using Jurkat cells as well as their effect on Leishmania donovani amastigotes using high-content analysis. Results show hexachlorophene and a mixture of theaflavin monogallates inhibit Leishmania multiplication in infected macrophages derived from THP-1 cells, although the inhibitory effect on LmPDI enzymatic activity does not necessarily correlate with the antileishmanial activity
    corecore